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Abstract

This paper is concerned with vibration analysis considering fluid–structure interaction (FSI) in liquid-
filled pipe system using transfer matrix method (TMM) in frequency domain. The emphasis is placing
specially upon the multi-span pipe system with middle rigid constraints. Three major mechanisms of
coupling, the friction coupling, the Poisson coupling and the junction coupling, as well as both distributed
and concentrated external excitations are considered in this study. A phenomenon associated with the rigid
constraints, namely, a junction coupling depending on the Poisson coupling and friction coupling (might be
called the conditional junction coupling), is revealed and discussed. Numerical examples indicate that the
conditional junction coupling has much larger influence on the frequencies of a liquid-filled pipe system
than the Poisson coupling does. It is also shown through the numerical examples that the proposed method
is efficient.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The fluid–structure interaction (FSI) in liquid-filled pipe systems has been investigated
extensively [1–3]. There are three independent major coupling mechanisms of FSI in pipe systems
for longitudinal vibrations. The friction coupling represents a longitudinal interaction caused by
friction between fluid and pipe. The Poisson coupling is such an interaction that the change of
fluid pressure causes additional hoop stress in pipe wall and then, owing to Poisson ratio, induces
corresponding normal stress in pipe wall, and vice versa. The Junction coupling occurs only at the
boundaries or the junction of two pipe spans. Mathematically, the Poisson and friction coupling
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make the governing equations coupled and cause the equations much different from the
traditional ones [4], whereas the junction coupling is usually expressed through the boundary
conditions. Among the three coupling mechanisms, the junction coupling is, therefore, the easiest
one to deal with.
Thorley [5] was the first who pointed out the existence of precursor waves caused by the Poisson

coupling, and Vardy and Fan [6] verified it through a well designed experiment. D’Souza and
Oldenburger [7] presented one of the earliest studies in the field. In their paper, the Laplace
transform was used to solve an equation including friction and junction coupling. Charley and
Caignaert [8] used experimental data to demonstrate that transfer matrices for FSI can predict the
measured pressure spectra much better than the classical waterhammer transfer matrices [4], even
for simple systems. Charley and Carta [9] presented some recent results on the subject.
Wilkinson [10] presented transfer matrices for the longitudinal, lateral and torsional vibrations

of pipes. He studied the junction coupling, but without considering the friction and the Poisson
coupling. El-Raheb [11], Nanayakkara and Perreira [12] derived transfer matrices for straight and
curved pipes, including the effects of the junction coupling but excluding those of the Poisson and
the friction coupling. Kuiken [13] studied the effects of the Poisson and the junction coupling
through a numerical simulation. TMM has also been used by Lesmez [14,15], Hatfield [16] et al.
and Wiggert et al. [17] (in time domain), Tentarelli and Brown [18] and Brown and Tentarelli [19]
(in frequency domain), De Jong [20,21] (in frequency domain). Among them, the friction coupling
was considered by Tentarelli and Brown [18] and Brown and Tentarelli [19].
All of the above-mentioned studies did not consider multi-span pipelines with middle

constraints. Recently, Wu and Shih [22] developed a TMM for multi-span fluid-conveying pipe.
However, they only dealt with the transverse vibration of an Euler–Bernoulli pipe without
considering its longitudinal vibration.
Zhang et al. [23] obtained a solution of the four-equation model of FSI in the frequency domain

for longitudinal vibration. It has been shown from a series of researches conducted in recent years
[24–27] that the frequency-based approaches are efficient for the analysis of FSI in liquid-filled
pipe systems. In the present paper, an efficient transfer matrix method for longitudinal vibration
analysis of multi-span fluid conveying pipelines with rigid constraints is developed. There are two
problems encountered for solving the title problem. Firstly, only variables of fluid can be directly
transferred from one span to another, whereas the variables of pipe are usually ‘‘separated’’ by the
constraints. The TMM proposed in the present paper can overcome this difficulty by combining
the pipe variables into the transfer equations. Secondly, a junction coupling caused by the Poisson
coupling, which might be called a conditional junction coupling, may affect the frequency
response, which makes the frequencies of liquid in pipes much different from those of the classical
case. In the proposed TMM, three major mechanisms of coupling, friction coupling, the Poisson
coupling and junction coupling will be considered. In addition to the free vibration analysis, this
paper mainly aims at the frequency response analysis of a liquid-filled pipe system. With the
proposed TMM, the transient response in time domain would be possibly determined by taking
inverse Laplace transform.
In this paper, a pipeline is divided into several spans by rigid constraints (see Fig. 1). A span

may consist of several sections. Within a section, the pipe is uniform in geometry and materials. If
a concentrated external excitation is acted on a span, we will divide the span into two sections. A
node is introduced in the pipe where there is a rigid constraint, or a sudden change in geometry
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and materials, or a concentrated external excitation is subjected to. The leftmost and rightmost
points (see Fig. 1) of the entire pipeline are called the upstream end and downstream end,
respectively. At each end, there are two boundary conditions, whereas at a node, there are two
compatibility conditions that give a relationship between the variables of the two adjacent pipe
sections or spans.

2. The solution for single span pipe system

2.1. The governing equation and its uncoupling

The governing equation for longitudinal vibration of a fluid-filled pipe system can be expressed
with matrices as [26]

%A
@yðz; tÞ

@t
þ B

@yðz; tÞ
@z

þ Cyðz; tÞ ¼ rðz; tÞ; ð1Þ

where yðz; tÞ is a vector of unknowns

yðz; tÞ ¼ ½V ;H; ’uz;sh�T ð2Þ

in which ’uz ¼ ’uzðz; tÞ is the speed along the direction of z; V ¼ V ðz; tÞ is the cross-sectional average
speed, rðz; tÞ on the right-hand side of Eq. (1) is the external excitation acting along the pipe,
H ¼ Hðz; tÞ is the cross-sectional average pressure head of liquid, and sh ¼ shðz; tÞ is the stress
head of pipe wall. H ¼ Hðz; tÞ and sh ¼ shðz; tÞ are defined below related to pressure P ¼ Pðz; tÞ
and normal stress %sz ¼ %szðz; tÞ as

Hðz; tÞ ¼
Pðz; tÞ

grf
þ z sinðgÞ �

P0ðzÞ
grf

; %shðz; tÞ ¼
szðz; tÞ

grt
þ z sinðgÞ �

s0ðzÞ
grt

; ð3Þ

where g is the elevation angle of the pipe; P0ðzÞ; s0ðzÞ are the initial pressure and initial stress,
respectively; rt and rf are the density of pipe and liquid, respectively.
Other parameters in Eq. (1) are

%A ¼

1 0 0 0

0 g=c2F 0 0

0 0 1 0

0
rfgRn
rtec2T

0 �
1

rtc
2
T

2
6666664

3
7777775
; B ¼

0 g 0 0

1 0 �2n 0

0 0 0 �1=rt
0 0 1 0

2
6664

3
7775 ð4Þ
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in which

c2F ¼
1

rf

1

K
þ
2Rð1� n2Þ

eE

� ��1
; c2T ¼

E

rt
: ð5Þ

In Eq. (5), n is the Poisson ratio, R is the inner radius of pipe, e is the thickness of pipe wall, E is
elastic modulus, g is the constant of gravity and K is the bulk modulus of liquid. Matrix C

contains the coefficients of friction and structural viscous damping. When the laminar flow model
is adopted, C is a constant matrix [26].
In Eq. (4), the terms a42 ¼ rfgRn=rtec2T and b23 ¼ �2n represent the Poisson coupling, which,

together with matrix C, make the governing equations coupled.
Taking the Laplace transform, denoted by Lð�Þ; for Eq. (1) results in

sAðsÞYðz; sÞ þ B
@Yðz; sÞ

@z
¼ %rðz; sÞ; ð6Þ

where

Yðz; sÞ ¼ Lðyðz; tÞÞ;

AðsÞ ¼ %Aþ C=s;

%rðz; sÞ ¼ Lðrðz; tÞÞ þ AðsÞyðz; 0Þ ð7Þ

in which yðz; 0Þ is a vector of the initial conditions, s is the Laplace variable.
From a generalized eigenvalue problem jB� lAj ¼ 0; one obtains a diagonal matrix with

eigenvalues in the diagonal elements

K ¼ diag l1ðsÞ; l2ðsÞ; l3ðsÞ; l4ðsÞ
	 


¼ diag l1ðsÞ; �l1ðsÞ; l3ðsÞ; �l3ðsÞ
	 


: ð8Þ

Since we deal with a set of hyperbolic partial differential equations, as shown in the second line of
Eq. (8), we have l2ðsÞ ¼ �l1ðsÞ; l4ðsÞ ¼ �l3ðsÞ: The eigenvalues liðsÞ can be written explicitly [26],
and if C ¼0; the eigenvalues li; and the elements of the matrices A and S are all real numbers
independent of s: The full regular matrix SðsÞ whose columns are the corresponding eigenvectors is
defined from

BSðsÞ ¼ AðsÞSðsÞKðsÞ: ð9Þ

Multiplying Eq. (6) with

TðsÞ ¼ S�1ðsÞA�1ðsÞ ð10Þ

and then combined it with Eq. (9), yields

svðz; sÞ þ K
qvðz; sÞ
qz

¼ TðsÞ%rðz; sÞ; ð11Þ

where

vðz; sÞ ¼ TðsÞAðsÞYðz; sÞ: ð12Þ

Since K is a diagonal matrix, Eq. (11) is a set of four independent ordinary equations with
complex constant coefficients, and its general solution is

vðz; sÞ ¼ Eðz; sÞv0ðsÞ þ qðz; sÞ; ð13Þ
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where

Eðz; sÞ ¼ diag exp �
s

l1ðsÞ
z

� �
; exp

s

l1ðsÞ
z

� �
; exp �

s

l3ðsÞ
z

� �
; exp

s

l3ðsÞ
z

� �
 �
vðz; sÞ ¼ f v1; v2; v3; v4 g

T qðz; sÞ ¼ f q1; q2; q3; q4 g
T ð14Þ

v0 ¼ v0ðsÞ contains undetermined integration constants depending on boundary conditions, and
qðz; sÞ is a particular solution. When denoting

T%r ¼ ½ r1ðz; sÞ; r2ðz; sÞ; r3ðz; sÞ; r4ðz; sÞ �T ð15Þ

the elements of vector qðz; sÞ can be determined by

qi ¼
se�sz=liðsÞ

liðsÞ

Z z

0

riðx; sÞe�sx=liðsÞ dx i ¼ 1; 2; 3; 4: ð16Þ

From Eqs. (12) and (10), we have

Yðz; sÞ ¼ Kðz; sÞv0ðsÞ þQðz; sÞ; ð17Þ

where regular matrix Kðz; sÞ and vector Qðz; sÞ are defined as

Kðz; sÞ ¼ SðsÞEðz; sÞ; Qðz; sÞ ¼ SðsÞqðz; sÞ: ð18Þ

2.2. The boundary conditions

The original boundary conditions can be found in Ref. [28]. Here we express them in matrix
forms, which are convenient for solving the discussed problem. The boundary conditions at an
upstream end or downstream end can therefore be

½DðsÞ�2�4fYð%z; sÞg4�1 ¼ ffðsÞg2�1; ð19Þ

where matrices DðsÞ and fðsÞ can be determined according to the boundary conditions, and %z is the
co-ordinate of the end (e.g., 0 or the length of the pipe L). The subscripts outside the brackets of
Eq. (19) denote the numbers of row and column of the matrix. Thus, for the longitudinal
vibration problem, there are two boundary conditions at each end. It will be shown that the
boundary conditions involved in the numerical examples of the paper can be written in the form
of Eq. (19).
Several boundary conditions are considered here.

* One end with a reservoir, fixed pipe:

Dr ¼
0 0 1 0

0 1 0 0

" #
; frðsÞ ¼ ½ ugðsÞ 0 �T ð20Þ

where ug denotes the ground velocity, e.g., an earthquake excitation. The constant pressure Po

of the reservoir is taken into account in H (see Eq. (3)). Therefore, if the pipe is horizontally
placed, the elevation angle g is zero, and accordingly at this end H ¼ 0:
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* Closed valve or closed end with mass m; fixed pipe:

DR ¼
1 0 0 0

0 0 1 0

" #
; fRðsÞ ¼ ½ ugðsÞ ugðsÞ �T: ð21Þ

* Closed valve or closed end with mass m; longitudinally movable pipe:

Dm ¼
1 0 �1 0

0 grfAf 7sm �grtAt

" #
; fm ¼ ½ 0 7RlðsÞ �T; ð22Þ

where Af ;At are the area of inner part of the pipe and area of the pipe wall, respectively. m is the
mass of the valve or the sealed end. The sign ‘‘7’’ is determined according to the direction of the
co-ordinate and the position where the mass or the excitation appears. Rl is the Laplace transform
of the external excitation at the corresponding end.
With the above expressions, the boundary conditions can be expressed in relatively simple and

unified forms. For example, when a single span pipe is fixed and connected with a reservoir at the
upstream end z ¼ 0; and it is fixed and connected with a closed valve at the downstream end
z ¼ L; then the boundary conditions can be written as

DrYð0; sÞ ¼ frðsÞ; DRYðL; sÞ ¼ fRðsÞ: ð23Þ

2.3. The frequency domain solution for single span pipe system

For a single and uniform span pipe without middle constraints, assuming that L is the length of
the pipe, letting z ¼ 0 and z ¼ L in Eq. (16), we get eight relationships between the unknowns and
undetermined integration constants

Yð0; sÞ ¼ Kð0; sÞv0ðsÞ þQð0; sÞ;

YðL; sÞ ¼ KðL; sÞv0ðsÞ þQðL; sÞ: ð24Þ

At the end z ¼ 0 or z ¼ L; there are only two boundary conditions:

DupðsÞYð0; sÞ ¼ Fð0; sÞ;

DdownðsÞYðL; sÞ ¼ FðL; sÞ; ð25Þ

whereDupðsÞ;DdownðsÞ and Fð0; sÞ;FðL; sÞ denote the boundary conditions expressed in Eq. (21)–(23)
at upstream and downstream end of the pipe, respectively.
Combining Eqs. (23)–(25) yields

DupðsÞKð0; sÞv0ðz; sÞ ¼ Fð0; sÞ �DupðsÞQð0; sÞ;

DdownðsÞKðL; sÞv0ðz; sÞ ¼ FðL; sÞ �DdownðsÞQðL; sÞ:
ð26Þ

Eq. (26) can also be written in a matrix form

RðsÞv0ðsÞ ¼ %FðsÞ; ð27Þ
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where

RðsÞ ¼
DupKð0Þ

DdownKðLÞ

" #
4�4

; ð28Þ

%FðsÞ ¼
Fð0Þ �DupQð0Þ

FðLÞ �DdownQðLÞ

( )
4�1

: ð29Þ

Eq. (27) is similar to that given in Ref. [26], but it is more concise in form. For a pipe system
with more than one pipe sections or spans, Eq. (26) can be applied to different pipe sections,
and 0 and L in the equation are the local co-ordinates from upstream node to downstream
node.
If the boundary conditions are able to determine all the undetermined constants, R is certainly

regular.
Substituting v0 ¼ R�1ðsÞ %FðsÞ into Eq. (16) one obtains

Yðz; sÞ ¼ Kðz; sÞR�1ðz; sÞ %FðsÞ þQðz; sÞ: ð30Þ

3. The transfer matrix method for multi-span pipe systems

A reservoir-pipe-valve (RPV) system with multi-spans is widely used in practices such as in
high-pressure pipelines of water power stations. Fig. 1 illustrates a RPV system with N spans
numbered 1; 2;y;N from upstream to downstream (in Fig. 1, N ¼ 5). A point where a rigid
constraint located at is called a node, the sequence numbers of nodes are 1; 2;y;N þ 1 also from
upstream to downstream.
The co-ordinate z (from upstream to downstream) of the ith span is used as local co-ordinate

and denoted as zi: For example, in the ith span, the upstream node, i.e., the (i � 1)th node, one has
zi ¼ 0 and its downstream node, i.e., the (i þ 1)th node, one has a co-ordinate zi ¼ Li:

3.1. The transfer matrices of the four variables

Recalling that Eq. (17) is hold for all spans, for the ith span it becomes

Yiðzi; sÞ ¼ Kiðzi; sÞv0iðsÞ þQiðzi; sÞ; i ¼ 1; 2;y;N; ð31Þ

where v0iðsÞ is a vector of undetermined integration constants related to the ith span (see Eqs. (13)
and (14)). Substituting 0 and zi into Eq. (31), and then eliminating v0iðsÞ gives

Yið0; sÞ ¼ Fiðzi; sÞYiðzi; sÞ þ %Qiðzi; sÞ ð32Þ

in which

%Qiðzi; sÞ ¼ Qið0; sÞ � Fiðzi; sÞQiðzi; sÞ ð33Þ

and the matrix Fi is called the field transfer matrix (for the four variables), defined as

Fiðzi; sÞ ¼ Kið0; sÞK�1
i ðzi; sÞ ¼ SiðsÞE�1ðzi; sÞS�1

i ðsÞ: ð34Þ
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We can also write Fi in the following form

Fi ¼
FðiÞ11 FðiÞ12

FðiÞ21 FðiÞ22

" #
: ð35Þ

From Eq. (34), it can be seen that the diagonal sub-matrices FðiÞ11 and FðiÞ22 of Fi corresponding
to the non-FSI motions of fluid and pipe, respectively. The non-diagonal sub-matrices FðiÞ12 and
FðiÞ21 represent the Poisson coupling and the friction coupling, respectively. For example, if C ¼ 0;
the matrices S and S

�1can be written explicitly in the form [27]

SðiÞ ¼
S11 nS12
nS21 S22

" #
ðiÞ

; S�1
ðiÞ ¼

s11 ns12
ns21 s22

" #
ðiÞ

; ð36Þ

where all the sub-matrices Sij and sij (i; j ¼ 1; 2) are finite and non-zero. From Eq. (34), it is easy to
know that the non-diagonal sub-matrices nF12 and nF21 of Fmust also be of the form like the non-
diagonal sub-matrices of S or S�1: Thus, when n ¼ 0; FðiÞ12 and FðiÞ21 of Fi are equal to zero.
Eq. (32) is then uncoupled, and becomes two sets of independent equations, each represents the
motion of fluid or pipe.
We consider, at first, a span consisting of M sections (with M � 1 middle sub-nodes) with

different cross-sections, materials and thickness of the pipe wall and so on. It is assumed
%Qiðzi; sÞ ¼ 0; indicating that there is no external force (see Eq. (16)) acting on the system.
Evidently, Eq. (34) can also be applied to each of such sections, on condition that zi is adopted as
the local co-ordinate within the section. Thus, the compatibility conditions at a node between two
sections are

DjYjðLj; sÞ ¼ Djþ1Yjþ1ð0; sÞ j ¼ 1; 2;y;M; ð37Þ

where

Dj ¼

AfðjÞ 0 �AfðjÞ 0

0 1 0 0

0 0 1 0

0 AfðjÞ 0 AtðjÞ

2
6664

3
7775

in which AfðjÞ and AtðjÞ are the area of liquid and the pipe wall in the ith section, respectively.
Obviously, the matrix Dj is regular. Thus the relationship between the variables of the upstream
and downstream sides of a node is then

YjðLj; sÞ ¼ PjYjþ1ð0; sÞ ð38Þ

in which the matrix

Pj ¼ D�1
j Djþ1 ð39Þ

is the point transfer matrix (for the four variables).
The point transfer matrix Pj in Eq. (39) and the field transfer matrix Fi (with subscript j) in Eq. (34)

can be used to obtain the transfer matrix for a span with several sections easily. For examples, the
global transfer matrix may be (see Fig. 1 and assuming that there is no rigid constraint)

N ¼ F1P1F2P2;y;FiPi;y;FM�1PM�1: ð40Þ
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With the global transfer matrix N; the relationship between the variables of both upstream end
and downstream end of such a span is

Y1ð0; sÞ ¼ NYMð0; sÞ ¼ NFMYMðLM ; sÞ: ð41Þ

In some sense, Eq. (41) condense all sections in a span into a single uniform section.

3.2. The field transfer matrix of fluid variables

Assuming that the local loss of energy at a rigid constraint is neglected, the compatibility
conditions at the ith rigid constraint, which connects the ith and (i þ 1)th spans, are

Equal discharge : VUðiþ1ÞAfðiþ1Þ ¼ VDðiÞAfðiÞ; ð42Þ

Equal pressure : HU ¼ HD; ð43Þ

Zero displacement : ’uUðiþ1Þ ¼ 0; ’uDðiÞ ¼ 0; ð44Þ

where, the variables at upstream node and downstream node of a span are identified with
subscripts U and D; respectively. In the compatibility conditions (Eqs. (42)–(44)), the stresses at
both spans do not appear, which makes it impossible to establish the point transfer matrix and to
get a relationship shown in Eq. (37).
In order to perform the transfer, denoting

xðz; sÞ ¼ L
Vðz; tÞ

Hðz; tÞ

( )
; ð45Þ

Uðz; sÞ ¼ Lð ’uðz; tÞÞ; ð46Þ

sðz; sÞ ¼ Lðshðz; tÞÞ ð47Þ

thus, one obtains

Yðz; sÞ ¼

xðz; sÞ

Uðz; sÞ

sðz; sÞ

8><
>:

9>=
>;: ð48Þ

For the ith span, the unknowns are identified with subscript i as xðiÞðz; sÞ; UðiÞðz; sÞ; sðiÞðz; sÞ:
The transform matrix of the ith span can be rewritten as

FðiÞ ¼ FðiÞðLi; sÞ ¼

FðiÞ11 FðiÞ12 FðiÞ13 FðiÞ14

FðiÞ21 FðiÞ22 FðiÞ23 FðiÞ24

FðiÞ31 FðiÞ32 FðiÞ33 FðiÞ34

FðiÞ41 FðiÞ42 FðiÞ43 FðiÞ44

2
6664

3
7775: ð49Þ

ARTICLE IN PRESS

K. Yang et al. / Journal of Sound and Vibration 273 (2004) 125–147 133



With the above-introduced expressions, Eq. (32), taking zi ¼ Li; becomes

xðiÞð0; sÞ

UðiÞð0; sÞ

sðiÞð0; sÞ

8><
>:

9>=
>; ¼

FðiÞ11 FðiÞ12

FðiÞ21 FðiÞ22

" # xðiÞðLi; sÞ

UðiÞðLi; sÞ

sðiÞðLi; sÞ

8><
>:

9>=
>;þ %QiðsÞ: ð50Þ

If the up- and downstream nodes of the ith span are both rigid constrained, we have

UðiÞð0; sÞ ¼ 0 and UðiÞðLi; sÞ ¼ 0: ð51Þ

Substituting Eq. (51) into Eq. (50) yields

sðiÞðLi; sÞ ¼ �
1

FðiÞ34
½FðiÞ31 FðiÞ32 �xðiÞðLi; sÞ � %QðiÞ3

� �
; ð52Þ

where %QðiÞ3 is the third row of the vector %QiðsÞ: As shown in Fig. 1, only node No. 5 may not
satisfy this condition.
Thus, the variables of the pipe in this span are either zero (for velocity) or can be expressed with

the fluid variables xðiÞ (for stress in pipe wall). This implies that only fluid variables need
transferring.
The first two rows of Eq. (50) give

xðiÞð0; sÞ ¼ FðiÞ11xðiÞðLi; sÞ þ
FðiÞ14

FðiÞ24

( )
sðiÞðLi; sÞ þ

%QðiÞ1

%QðiÞ2

( )
ð53Þ

substituting Eq. (52) into Eq. (53) leads to

xðiÞð0; sÞ ¼ FxðiÞxðiÞðLi; sÞ þ %QxðiÞ; i ¼ 2; 3;y;N � 1; ð54Þ

where

%QxðiÞ ¼
%QðiÞ1

%QðiÞ2

( )
þ

1

FðiÞ34

FðiÞ14

FðiÞ24

( )
%QðiÞ3 ð55Þ

FxðiÞ in Eq. (54) is called the transfer matrix for fluid in the ith span and is defined as

FxðiÞ 

1

FðiÞ34

FðiÞ34FðiÞ11 � FðiÞ14FðiÞ31 FðiÞ34FðiÞ12 � FðiÞ14FðiÞ32

FðiÞ34FðiÞ21 � FðiÞ24FðiÞ31 FðiÞ34FðiÞ22 � FðiÞ24FðiÞ32

" #
: ð56Þ

Considering that the upstream end may have other kinds of boundary conditions different from
those shown in Fig. 1, Eq. (54) may not be valid for the first span, although both sides are rigid
constrained. Therefore, in Eq. (54), the span number i begins from 2 rather than 1.
It is obvious that the first term in Eq. (53) is related to fluid only. However, it contains the effect

of the Poisson coupling (see Eqs. (34) and (36)). If n ¼ 0; it will become the same case as what we
can obtain from the classical waterhammer theory [4]. The second term in Eq. (53) represents the
influence of pipe on fluid owing to all of the three kinds of coupling. As a matter of fact, when the
Poisson coupling and friction coupling are neglected, the middle constraints will make no
influence on the fluid (see Eq. (1)). As in the case of C ¼ 0; if the Poisson ratio of pipe wall is equal
to zero, the second term of Eq. (53) will become zero because of the disappearance of FðiÞ12 and
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FðiÞ21 in Eq. (35). Therefore, the second term of Eq. (53) corresponds to the junction coupling
related to the Poisson coupling and friction coupling. Although caused by compatibility
conditions at a node, it is somewhat different from junction coupling, since its existence depends
upon the other two kinds of coupling. For this reason, it might be called conditional junction
coupling. We will illustrate this phenomenon later. In fact, it has much larger influence on the
frequencies of a pipe system than the Poisson coupling does (by comparing Fig. 3(a) with
Fig. 6(a)).

3.3. The point and global transfer matrix of fluid variables

Taking the Laplace transform to the constrained conditions, Eqs. (42) and (43), and expressed
with matrix xðiÞ gives

xðiÞðLi; sÞ ¼ PxðiÞxðiþ1Þð0; sÞ; i ¼ 1; 2;y;N � 1; ð57Þ

where PxðiÞ is the point transfer matrix for fluid defined by

PxðiÞ ¼
Afðiþ1Þ=AfðiÞ 0

0 1

" #
: ð58Þ

Obviously, PxðiÞ is different from the point transfer matrix Pi defined in Eq. (39).
With the field transfer matrix FxðiÞ ¼ FxðiÞðLi; sÞ in Eq. (54) (taking zi ¼ Li) and the point

transfer matrix PxðiÞ in Eq. (57), the relationship between the upstream fluid variables of the ith
constrained span and the upstream fluid variables of the (i þ 1)th constrained span is found to be

xðiÞð0; sÞ ¼ FxðiÞxðiÞðLi; sÞ þ %QxðiÞ; i ¼ 1; 2;?;N � 1; ð59Þ

xðiÞð0; sÞ ¼ FxðiÞPxðiÞxðiþ1Þð0; sÞ þ %QxðiÞ; i ¼ 1; 2;?;N � 1: ð60Þ

Combining Eqs. (59) and (60) yields

xð2Þð0; sÞ ¼ NxðN�1ÞxðNÞð0; sÞ þ
XN�2

i¼1

ðNxðiÞ %Qxðiþ1ÞÞ; ð61Þ

where NxðiÞ is the global transfer matrix

NxðiÞ ¼

Qi
j¼2 FxðjÞPxðjÞ 2oipN � 1;

I i ¼ 1:

(
ð62Þ

Therefore, for all constrained spans, we have

xð1ÞðL1; sÞ ¼ Pxð1Þxð2Þð0; sÞ ¼ Pxð1ÞNxðN�1ÞxðNÞð0; sÞ þ Pxð1Þ

XN�2

j¼1

ðNxðjÞ %Qxðjþ1ÞÞ: ð63Þ

As for the case shown in Fig. 1, the above equation becomes

xð1ÞðL1; sÞ ¼Pxð1ÞFxð2ÞPxð2ÞFxð3ÞPxð3ÞFxð4ÞPxð4Þxð5Þð0; sÞ

þ Pxð1ÞðFxð2ÞPxð2ÞFxð3ÞPxð3Þ %Qxð4Þ þ Fxð2ÞPxð2Þ %Qxð3Þ þ %Qxð2ÞÞ; ð64Þ

Eq. (64) establishes the relationship between the downstream fluid variables of the first span
xxð1ÞðL1; sÞ and the upstream fluid variables of the last span xð5Þð0; sÞ: It is noted that Eq. (64) is not
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a relationship between variables of nodes 1 and 5, as normally at the two nodes the pipe is not
necessarily rigid constrained.
For a multi-span pipeline, Eq. (63) play a similar role as Eq. (57) for a two span pipeline.

Eq. (63) condenses all nodes of a constrained span into a single node, just like Eq. (41) condenses
all sections into a single uniform section.

3.4. The final equation and its solution

By using the field transfer matrix in Eq. (32) for the first and the last spans, we have

Y1ð0; sÞ ¼ F1Y1ðL1; sÞ þ %Q1ðsÞ; ð65Þ

YNð0; sÞ ¼ FNYNðLN ; sÞ þ %QNðsÞ ð66Þ

and the boundary conditions at upstream end and downstream end leads to

DUY1ð0; sÞ ¼ %FU; ð67Þ

DDYNðLN ; sÞ ¼ %FD: ð68Þ

Combining Eqs. (65) and (67) yields

DUF1Y1ðL1; sÞ ¼ %FU �DU
%Q1ðsÞ: ð69Þ

Combining Eqs. (66) and (68) yields

DDF
�1
N YNð0; sÞ ¼ %FD þDDF

�1
N

%QNðsÞ: ð70Þ

The compatibility conditions of the first and the last rigid constraints give

U1 ¼ 0; UN�1 ¼ 0: ð71Þ

Eqs. (69)–(71) and (63) are 8 equations including 8 variables that are required to solve. They can
be written in matrix form as

DUF1 02�4

02�4 DDF
�1
N

IU ID

I0 %NN�1

2
66664

3
77775
8�8

Y1ðL1; s

YNð0; sÞ

( )
¼

%FU �DU
%Q1ðsÞ

%FD þDDF
�1
N

%QNðsÞ

02�1

Pxð1Þ
PN�2

j¼0 ðNxðjÞ %Qxðjþ1ÞÞ

8>>>><
>>>>:

9>>>>=
>>>>;

8�1

ð72Þ
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in which

IU ¼
0 0 1 0

0 0 0 0

" #
; ID ¼

0 0 0 0

0 0 1 0

" #
; ð73Þ

Io ¼
1 0 0 0

0 1 0 0

" #
; %NN�1 ¼ ½�Pxð1ÞNxðN�1Þ 02�2 �: ð74Þ
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Fig. 2. A single span RPV system.

Table 1

Geometrical and material properties of the RPV system

Steel pipe Water

L ¼ 20m length K ¼ 2:1GPa, bulk modulus

R ¼ 398:5mm inner radius rt ¼ 1000 kg=m3 density

e ¼ 8mm pipe wall thickness

E ¼ 210GPa Young’s modulus

n¼ 0:3 Poisson ratio

rt ¼ 7900 kg=m3 density of pipe

Table 2

Frequencies of the single span pipe with different Poisson ratios and two boundary conditions

Mode Valve is free Valve is constrained

Ref. [26] n ¼ 0:3 n ¼ 0:0 n ¼ 0:1 n ¼ 0:2 n ¼ 0:3 n ¼ 0:0 n ¼ 0:1 n ¼ 0:2 n ¼ 0:3

1 12 11.4 11.7 12.0 12.4 12.8 12.8 12.9 13.1

2 32 33.6 33.0 32.4 31.8 38.5 38.5 38.5 38.5

3 56 54.4 54.8 55.2 55.7 64.1 64.1 64.1 64.0

4 73 73.9 73.6 73.4 73.2 89.7 89.7 89.7 89.6

5 97 94.7 95.3 96.1 96.9 115.4 115.3 115.2 115.1

6 116 116.9 116.6 116.4 116.2 128.9 129.3 130.3 131.8

7 141 139.7 140.0 140.5 141.0 141.0 141.0 141.1 141.3

8 161 161.9 161.4 160.9 160.5 166.7 166.7 166.6 166.6

9 185 182.8 183.2 183.8 184.5 192.3 192.3 192.2 192.1
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After obtaining the above 8 variables at the downstream end of the first and the upstream end of
the last span, we can calculate the frequency responses at any point zi of the constrained spans, by
using Eqs. (57), (54), (48) and (32).

4. Numerical examples

Two cases of a RPV system are considered in the examples. Case 1: the valve is rigid
constrained. Case 2: the valve is free. Also in all the examples of this paper, the valve is assumed to
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Fig. 3. Frequency response of the single span pipe. (a) Valve is rigid constrained, (b) valve is free.
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be instantaneously closed, and the mass m of the valve in Eq. (22) is assumed to be zero. For the
friction matrix in Eq. (1), we have C ¼ 0:

4.1. Single span pipeline with 20 m in length

First of all, a system with single span, as shown in Fig. 2, is considered here for comparison
purposes. The parameters of the system are listed in Table 1, which are the same as those used by
Zhang et al. [26].
The predicted frequencies are listed in Table 2 together with the results of Case 2 obtained by

Zhang et al. [26].
It is shown in Table 2 and Fig. 3 that for Case 2, the liquid-pipe coupling (including the Poisson

coupling and the junction coupling) influences the frequencies significantly. For Case 1, the
difference of frequencies is rather small mainly due to no existence of junction coupling and to the
large stiffness of the pipe wall.
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Fig. 4. Modes 1–3 of the single span pipe with constrained valve.
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Theoretically, all the modes belong to the system, since the FSI makes the modes interacting (or
coupling) each other. On the other hand, when without FSI, the modes will separate into
independent modes of fluid and modes of pipe, respectively. Although in case with FSI, we can
only say the mode of the system. However, we can tell which comes from the separated fluid mode
and which originates from the separated pipe mode. Thus, the pipe mode and the fluid mode are
mentioned below, although they are not absolutely independent. To illustrate this, considering
Fig. 4 first, which shows the first three mode shapes of a single span pipe for Case 1. The three
modes mainly belong to the fluid; the vibration of the pipe is caused by the fluid through coupling.
As a result, for example, the mode of the velocity of the pipe, as shown in Fig. 5(a), is not
symmetry. Fig. 5(b) shows the 6th mode shape of the system (the first mode shape of the pipe),
which is symmetry. Evidently, in this mode, the pipe induces the vibration of the liquid. In
contrast with this observation, the 5th and 7th mode shapes of the system (mode shape of fluid, as
shown inFig. 5(a) and (b)) suggest that the fluid vibrates with their own mode shapes. Liquid
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Fig. 5. The 1st pipe mode shapes of and two nearby fluid mode shapes of the single span pipe with constrained valve.

(a) Mode shape 5th (fluid), (b) mode shape 6th (pipe), (c) mode shape 7th (fluid).
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induces the pipe’s vibration, in which the curves have two or three peaks as the same number of
peaks as those in the curves of the water head.

4.2. Multi-span pipeline with 20 m in length

To illustrate the application of the present transfer matrix method, a RPV system (see Fig. 1.) is
used as an example. Like the single span pipe system shown in Fig. 2, all the parameters in Table 1
remain unchanged for this example. However, the pipeline considered in this example is divided
into 5 equal spans with 4m in length for each span (the total length of the pipe remains 20m).
In Case 1, because the valve is also rigid constrained, all the boundary conditions and

compatibility conditions may cause junction coupling. Therefore, if the Poisson ratio is equal to
zero, the frequencies of the system are, as expected, the same as those of a single span pipe (see
column 2 of Table 3 and column 7 of Table 2). This implies that the constraints do not have any
effect on the frequencies of fluid, when there is no liquid-pipe coupling.
On the other hand, in Case 2 (the valve is free), the junction coupling takes place at the

downstream end (at the valve). The shorting of the last pipe span results in the increase of the
frequencies (see column 3 of Table 3 and column 3 of Table 2).
When comparing Fig. 6(a) with Fig. 3(a), we will find that when the same pipe is rigidly

constrained in 4 middle nodes, the differences of the frequencies between n ¼ 0:3 and n ¼ 0:0 are
large. In Fig. 3(a) the little differences of the frequencies for each mode between n ¼ 0:3 and
n ¼ 0:0 is found owing to the Poisson coupling only. However, in Fig. 6(a), larger differences exist
because of the Poisson coupling and mainly due to the so called conditional junction coupling.

4.3. Multi-span pipeline with 20 m in length for each span

In this example, we consider a pipeline, with 5 spans and 20m in length for each span, 100m
length in total. Other parameters in Table 1 remain unchanged for this example. The predicted
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Table 3

Frequencies of the multi-span pipe system with different lengths

Mode Pipeline length=5*4m Pipeline length=5*20m

n ¼ 0:0 n ¼ 0:3 n ¼ 0:0 n ¼ 0:3

Restrained

valve

Free

valve

Restrained

valve

Free

valve

Restrained

valve

Free

valve

Restrained

valve

Free

valve

1 12.8 12.5 13.1 13.1 2.6 2.5 2.6 2.6

2 38.5 37.5 39.3 39.0 7.7 7.5 7.9 7.8

3 64.1 62.5 65.3 64.6 12.8 12.5 13.1 12.9

4 89.7 87.5 91.1 89.3 17.9 17.5 18.2 17.9

5 115.4 112.4 116.6 112.8 23.1 22.5 23.3 22.6

6 141.0 137.3 142.1 137.1 28.2 27.5 28.4 27.4

7 166.7 162.1 167.2 160.5 33.3 32.4 33.4 32.1

8 192.3 186.8 192.4 185.1 38.5 37.4 38.5 37.0

9 218.0 211.4 217.7 210.4 43.6 42.3 43.5 42.1
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frequencies (with or without the Poisson coupling, Case 1 and Case 2) are listed in columns 6–9 of
Table 3. The corresponding frequency responses are illustrated in Fig. 7(a) and (b). As the total
length of the pipeline is enlarged by 5 times, the frequencies of fluid are about 1/5 of those of a
single span pipeline accordingly.
Fig. 8 shows the first three mode shapes of the system for Case 1. In the Figure, the rigid

constraints are placed at 0, 0.2, 0.4, 0.6,0.8 and 1.0/L where the velocity of the pipe is zero. The
first three mode shapes are mainly caused by the fluid. The first mode shape of the pipe (the 32nd
mode of the system) is shown in Fig. 9(a). By comparing Fig. 9(a) with a nearby fluid mode shape
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Fig. 6. Frequency responses of the RPV system with 5 spans (4m length for each span). (a) Valve is rigid constrained,

(b) valve is free.
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shown in Fig. 9(b) we believe that it is indeed the mode shape of the pipe, since its frequency is
near the first frequency of a solid bar with 20m (128.9Hz).

5. Conclusion

Vibration analysis considering fluid–structure interaction in liquid-filled pipe systems is
performed in frequency domain using the transfer matrix method (TMM). It extends the
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Fig. 7. Frequency responses of the RPV system with 5 spans (20m length for each span). (a) Valve is rigid constrained,

(b) valve is free.
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frequency domain based vibration analysis considering FSI presented in Ref. [26] from single-
span pipe to multi-span pipeline systems with rigid constraints. The emphasis is placing especially
upon the vibration analysis of multi-span pipeline systems with middle rigid constraints, since
such a problem is always encountered in engineering practices.
In order to solve the title problem by using TMM, 4 variables should be transferred from one

span to another. The TMM proposed in this paper solve this problem by combining
the pipe variables into the transfer equations. A special phenomenon associated with rigid
constraints has been identified, and the conditional junction coupling is revealed and
studied. It is found that the conditional junction coupling is a junction coupling depending on
the Poisson coupling and friction coupling. Therefore, the three major coupling mechanisms are
actually not totally independent. The numerical examples indicate that the conditional
junction coupling has much larger influence on the frequencies of a pipe system than the Poisson
coupling does. It is also shown through the numerical examples that the proposed method is
efficient.
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Fig. 8. Modes 1–3 of the pipe system with 5 spans.
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The proposed TMM considers the three major mechanisms of coupling and can deal with
vibration analysis of a multi-span pipe system with different geometry and material properties and
subjected to both distributed and concentrated external excitations. Furthermore, with the
proposed TMM, the transient response in time domain would be possibly determined by taking
inverse Laplace transforms.
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Fig. 9. The 1st pipe mode shape and nearby fluid mode shape of the pipe system with 5 spans and constrained valve.

(a) Frequency=132.1Hz, (b) frequency=136.1Hz.
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